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Understanding the links between structure and properties in materials is one of the most central 
challenges for computational physics, chemistry, and materials science. Atomic-scale 
simulations based on density-functional theory (DFT) have played important roles in this – but 
they are computationally expensive and can describe structurally complex materials only in 
small model systems. Novel interatomic potentials based on machine learning (ML) have 
recently garnered a lot of attention in computational physics, chemistry, and materials science: 
these simulation tools achieve close-to DFT accuracy at only a fraction of the cost. 
 
In the first part of this talk, I will argue that ML-based interatomic potentials are particularly 
useful for studying materials with complex structures, such as amorphous (non-crystalline) 
solids. I will describe an ML potential for amorphous carbon [1] that was built using the 
Gaussian Approximation Potential (GAP) framework [2], with a special view on what is needed 
to create and validate ML potentials for the amorphous state. I will present recent applications 
of GAP-ML models to porous and partly "graphitised" carbons that are relevant for batteries 
and supercapacitors [3], and to amorphous silicon, where ML-driven simulations allowed us to 
unlock long simulation times and accurate atomistic structures [4].  
 
In the second part, I will point out possible directions for the automated exploration and 
“learning” of condensed-phase potential-energy landscapes. We have recently introduced an 
ML-driven approach to inorganic crystal structure prediction, dubbed GAP-driven random 
structure searching (GAP-RSS) [5]. This technique, iteratively exploring and fitting structural 
space, allowed us to create to a flexible and accurate interatomic potential for elemental boron 
[5], and more recently to develop a more general computational framework that can explore 
and fit potential-energy surfaces for different materials [6]. These early results are hoped to 
enable a more widespread use of ML-driven materials simulations in the years to come. 
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