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The accuracy of Density Functional Theory calculations is governed by two factors: the func-
tional employed and the basis set.
Despite the great popularity and success of some very well known functionals, the universal func-
tional remains elusive. A vast number of functionals is currently available, sometimes tailor-made
to target specific systems or properties. Assessing the accuracy of a modern functional, requires
also a basis set which is capable of achieving an even greater precision – ideally approaching a
complete basis – efficiently and systematically.
The two main families of basis sets (plane waves and Gaussian-type orbitals) have drawbacks
which limit them, especially when high precision is required. A very attractive alternative is
constituted by by grid-base methods[1] such as Multiwavelets[2, 3]. They combine conceptual
simplicity (basis functions are standard polynomials) with the ability to reach complete basis set
results within any given, predefined precision. Multiwavelets are fully orthonormal (like plane
waves) and localized (like Gaussian-type orbitals).
With the development of MRChem,[4] – a multiwavelet code – we have been able to carry out
extensive benchmarks of energy and properties, consistently achieving the basis set limit[5, 6].
In this presentation, we will summarize the theoretical multiwavelet framework, with emphasis
on our implementation of the SCF optimizer and linear response solver, we will give an overview
of some recent applications, and we will discuss the hurdles which shall be overcome to extend
the Multiwavelet framework to large systems (thousands of electrons or more).
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