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Nuclear quantum effects such as zero point energy, nuclear delocalization, and tunneling play 
an important role in a wide range of chemical processes. Typically quantum chemistry 
calculations invoke the Born-Oppenheimer approximation and include nuclear quantum effects 
as corrections following geometry optimizations. The nuclear-electronic orbital (NEO) 
approach treats select nuclei, typically protons, quantum mechanically on the same level as the 
electrons with multicomponent density functional theory (DFT) or wavefunction methods [1]. 
Recently electron-proton correlation functionals have been developed to address the significant 
challenge within NEO-DFT of producing accurate proton densities and energies [2]. Moreover, 
time-dependent DFT and related methods within the NEO framework have been developed for 
the calculation of electronic, proton vibrational, and electron-proton vibronic excitations [3]. 
An effective strategy for calculating the vibrational frequencies of the entire molecule within 
the NEO framework has also been devised and has been shown to incorporate the most 
significant anharmonic effects [4]. Furthermore, multicomponent wavefunction methods based 
on coupled cluster and configuration interaction approaches, as well as multicomponent 
equation-of-motion coupled cluster methods for computing excited electronic and proton 
vibrational states, have been developed within the NEO framework [5]. These combined NEO 
methods enable the inclusion of nuclear quantum effects and non-Born-Oppenheimer effects in 
calculations of proton affinities, pKa’s, optimized geometries, vibrational frequencies, isotope 
effects, minimum energy paths, reaction dynamics, excitation energies, tunneling splittings, and 
vibronic couplings for a wide range of chemical applications. 
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