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I report on recent developments and applications about the coupled quantum mechan-
ical motion of the electrons and the atomic nuclei through a variational [1] and also a
perturbative [2] approach. For the applications, the underlying Schrödinger equation is
solved using a symmetry-adapted, explicitly correlated Gaussian ansatz. The variational,
pre-Born–Oppenheimer, approach has been extended towards (a) the solution of H+

3 as
an explicit five-particle problem [3], and (b) tightly converged electronically excited, rovi-
bronic states of the H2 molecule which appear as resonances in the full electron-nucleus
problem [4]. Concerning the perturbative route to small non-adiabatic effects, we have
formulated the second- (and third-)order effective Hamiltonian for the quantum nuclear
motion over coupled electronic states containing diagonal and off-diagonal non-adiabatic
mass-correction terms [2]. The general curvilinear expression for the non-adiabatic kinetic
energy (mass) correction has been formulated [5] and its numerical properties have been
studied for selected examples [6]. The non-adiabatic correction to the nuclear mass usually
amounts to ca. the mass of the electrons, but for special examples non-trivial deviations
arise. For example, in the outer-well of the HH̄ 1Σ+

g electronic state of H2, the dressed,
vibrating proton is lighter than the proton itself, which accounts for part of the discrep-
ancy of experiment and theory [7]. In order to achieve quantitative agreement between
the computations and high-resolution spectroscopy experiments, it is necessary to account
also for relativistic and radiative effects, for which we evaluate perturbative corrections
for the non-relativistic result. Our recently computed pre-Born–Oppenheimer term val-
ues for the rotationally excited EF 1Σ+

g states of H2 (N = 0, 1, . . . , 5) [4], appended with
relativistic, leading- and higher-order radiative corrections, are in a 0.001 ± 0.005 cm−1

agreement with experiment [8]. Further improvement of the theoretical uncertainty should
reveal fine details of higher-order radiative corrections and the finite size of the proton.
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